Spin Calogero models associated with Riemannian symmetric spaces of negative curvature

نویسنده

  • L. FEHÉR
چکیده

The Hamiltonian symmetry reduction of the geodesics system on a symmetric space of negative curvature by the maximal compact subgroup of the isometry group is investigated at an arbitrary value of the momentum map. Restricting to regular elements in the configuration space, the reduction generically yields a spin Calogero model with hyperbolic interaction potentials defined by the root system of the symmetric space. These models come equipped with Lax pairs and many constants of motion, and can be integrated by the projection method. The special values of the momentum map leading to spinless Calogero models are classified under some conditions, explaining why are the BCn models with two independent coupling constants associated with SU(n+1, n)/S(U(n+1)×U(n)) as found by Olshanetsky and Perelomov. In the zero curvature limit our models reproduce rational spin Calogero models studied previously and similar models correspond to other (affine) symmetric spaces, too. The construction works at the quantized level as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commutative curvature operators over four-dimensional generalized symmetric spaces

Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

متن کامل

On a class of paracontact Riemannian manifold

We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.

متن کامل

Generalized Symmetric Berwald Spaces

In this paper we study generalized symmetric Berwald spaces. We show that if a Berwald space $(M,F)$ admits a parallel $s-$structure then it is locally symmetric. For a complete Berwald space which admits a parallel s-structure we show that if the flag curvature of $(M,F)$ is everywhere nonzero, then $F$ is Riemannian.

متن کامل

HARISH-CHANDRA DECOMPOSITION FOR ZONAL SPHERICAL FUNCTION OF TYPE An A. Kazarnovski-Krol

Heckman-Opdam system of differential equations is holonomic , with regular singularities and has locally |W |-dimensional space of solutions ( cf. corollary 3.9 of [12]), where |W | is the cardinality of the Weyl group W . The system is a generalization of radial parts of Laplace-Casimir operators on symmetric Riemannian spaces of nonpositive curvature and is isomorphic to Calogero-Sutherland m...

متن کامل

Random matrix theory and symmetric spaces

In this review we discuss the relationship between random matrix theories and symmetric spaces. We show that the integration manifolds of random matrix theories, the eigenvalue distribution, and the Dyson and boundary indices characterizing the ensembles are in strict correspondence with symmetric spaces and the intrinsic characteristics of their restricted root lattices. Several important resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006